
..:

Technical Report ITL-98-2
July 1998

US Army Corps
of Engineers
Waterways Experiment
Station

Interactive Computational Steering
in Distributed, Heterogeneous High
Performance Computing Environments

by Alex R. Carrillo, John E. West

Approved For Public Release; Distribution Is Unlimited

Prepared for Headquarters, U.S. Army Corps of Engineers

no

rvj

Technical Report ITL-98-2
July 1998

Interactive Computational Steering
in Distributed, Heterogeneous High
Performance Computing Environments
by Alex R. Carrillo, John E. West

U.S. Army Corps of Engineers
Waterways Experiment Station
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Final report
Approved for public release; distribution is unlimited

Prepared for U.S. Army Corps of Engineers
Washington, DC 20314-1000

US Army Corps
of Engineers
Waterways Experiment
Station

HEAOOUAOTERS
BMU3MG

FOR INFORMATION CONTACT
PUBLIC AFFAIRS OFFICE
US ARMY ENGINEER
WATERWAYS EXPERIMENT STATION
3909 HALLS FERRY ROAD
VICKSBURG. MISS4SSIPPI 39180-6199
PHONE: (601)634-2502

STRUCTURES
LABORATORY

«*CAO»Hi3t(»V*'^3M tin»

Waterways Experiment Station Cataloging-in-Publication Data

Carrillo, Alejandro R.
Interactive computational steering in distributed, heterogeneous high performance

computing environments / by Alex R. Carrillo, John E. West; prepared for U.S. Army Corps
of Engineers.

35 p.: ill.; 28 cm. — (Technical report; ITL-98-2)
Includes bibliographic references.
1. High performance computing — Simulation methods. 2. Soil dynamics —Mathematical

models. I. West, John E. II. United States. Army. Corps of Engineers. III. U.S. Army
Engineer Waterways Experiment Station. IV. Information Technology Laboratory (U.S.
Army Engineer Waterways Experiment Station) V. Title. VI. Series: Technical report (U.S.
Army Engineer Waterways Experiment Station); ITL-98-2.
TA7 W34 no. ITL-98-2

Contents

Preface U1

Abstract 1

1 Introduction 2

2 System Overview 4

3 Numerical Simulation 6
3.1 Algorithm Development: Single Processor 7
3.2 Algorithm Development: Multi-Processor 8
3.3 Performance ^

4 Visualization *2

4.1 Data Reduction *■*
4.1.1 Algorithm ^
4.1.2 Performance 15

4.2 Display and User Interaction 1"

5 Communication 2"

6 Results 23

7 Conclusions 2°

8 Future Work 26

Bibliography 2'

SF-298

List of Figures

3.1 Single processor CRAY Y-MP CPU time per time step vs. number of particles
for the three phases of single processor optimization 8

3.2 Percentage of CPU time (bottom/red) vs. percentage of communication time
(top/green) for a 50,000 particle simulation on a 64-processor nCUBE2 with-
out load balancing 10

3.3 Percentage of CPU time (bottom/red) vs. percentage of communication time
(top/green) for a 50,000 particle simulation on a 64-processor nCUBE2 with
load balancing 10

3.4 Average time per time step for a 100,000 particle solution on several HPC
architectures 11

3.5 Average time per time step for various HPC architectures 11

4.1 Ray casting 14
4.2 Number of visible particles detected as the sample density increases 15
4.3 Data reducer performance (average frames per second) on 12 processors versus

the number of particles 17
4.4 Interactive Soil Model 18

5.1 System overview 21

Preface

This report1 presents the results of the creation of an interactive modeling system. The sys-
tem described uses distributed computational resources and high performance networking to
achieve real-time modeling of large soil masses, although the techniques are applicable to a
wide variety of scientific and engineering simulations. This work has been recognized with
both a Gold Medal in the High Performance Computing Challenge awarded at Supercom-
puting '96 in Pittsburgh, PA, and the 1997 Director's Research and Development Award at
the Waterways Experiment Station.

This research was performed at the U.S. Army Engineer Waterways Experiment Station
(WES), Vicksburg, MS, by Alex R. Carrillo and John E. West, both of the DoD High
Performance Computing Center, Information Technology Laboratory (ITL), WES. David
A. Homer, Geotechnical Laboratory, WES, and Dr. John F. Peters, Structures Laboratory,
WES, are the authors of the original version of the soil modeling application. This work was
funded in part by the DoD High Performance Computing Modernization Office, and was
made possible by a grant of computer resources at the DoD CEWES Major Shared Resource
Center. The work was under the direction of Dr. N. Radhakrishnan, Director, ITL.

The authors would like to thank Dr. M. M. Stephens of the Army High Performance Com-
puting Research Center for helpful discussions and contribution of the original version of
the code used to visualize output of the soil model. The authors would also like to thank
K. Gaither for her insightful comments leading to the incorporation of the texture map
approach to simplifying the particle geometry.

During preparation of this report, Dr. Robert W. Whalin was Director of WES. COL Bruce
K. Howard, EN, was Commander.

The contents of this report are not to be used for advertising, publications, or promotional purposes. Citation of
trade names does not constitute an official endorsement or approval of the use of such commercial products.

ill

Abstract

The ability to visually interact with and guide a running simulation can greatly enhance
understanding of both the nature of a numerical model and the characteristics of the under-
lying physical process. Until recently, interaction with large-scale simulations was inhibited
not only by computational limitations, but by network and graphics capabilities as well.
However, the increasing power of large high performance computing (HPC) systems, cou-
pled with the advent of new network hardware and innovative techniques for displaying large
data sets, has eliminated many of the barriers. It is now possible to link large computational
resources with powerful remote graphics workstations to create fully interactive, distributed
applications.

This report discusses the development of a distributed, interactive modeling system ca-
pable of providing responsive visual feedback to user input. The system is built around a
discrete element soil model being used to simulate the behavior of soil masses under large de-
formations. During the process of designing this system to be interactively responsive to the
user for systems of several hundred thousand particles, a range of technical problems were
encountered, including the computational burden of the discrete element method (DEM),
real-time visualization of large particle masses, and communication of data over large dis-
tances between heterogeneous resources using a variety of networks. This report highlights
how each of those obstacles was addressed and discusses the effectiveness of the final system.

Chapter 1

Introduction

Historically, large scale numerical modeling has been dominated by batch-oriented process-
ing, inhibiting researchers from efficiently inserting experience and insight into the simulation
process. Interaction with large scale simulations was further limited by network and graphics
capabilities. However, the increasing power of large HPC systems, coupled with the advent
of new network hardware and innovative techniques for displaying large data sets, has elim-
inated many of these barriers. It is now possible to link large computational resources with
powerful remote graphics workstations to create fully interactive, distributed applications in
areas previously limited to batch processing. Such capabilities can greatly enhance under-
standing of both the nature of the physical process and the characteristics of the underlying
model. During model development, real-time feedback and computational steering can pro-
vide researchers with vital clues to algorithmic errors or program bugs, shortening the time
needed to create and validate the numerical application. In production, interaction can lead
to a shorter, more effective research and development product cycle. Interaction also makes
possible the selective storage of simulation results, greatly reducing (or eliminating) disk
requirements by limiting output to critical times and/or regions.

The U.S. Army Engineer Waterways Experiment Station is developing three-dimensional
numerical methods for evaluating the off-road performance of military land vehicles in various
soil conditions. These computational models will supplement field tests and reduce depen-
dence on full-scale testing, ultimately resulting in less expensive, more efficient vehicles. As
part of that effort, the current work not only develops an efficient model for large scale soil
simulations, it also incorporates this model into a system capable of providing interactive
visual feedback to user input.

Ultimately, the driving force behind any interactive modeling system is the model itself.
The development of such a system is useless if the model cannot handle meaningful prob-
lem sizes at "real-time" computational rates. Previous work in interactive modeling of soil
masses by Moshell and Li [18] [21] and Burg and Carrington [5] has examined methods for
incorporating kinematic and dynamic soil models into real-time simulation and training envi-
ronments. However, these efforts have concentrated on creating "visually plausible" models
of soil behavior to increase the sense of realism in a synthetic environment, not creating mod-
els for engineering analysis. Some of this research [18] modeled soil deformation by vehicle
systems using Newtonian mechanics, but this work focuses primarily on agglomeration of
individual particles into representative groupings of homogeneous, isotropic soil particles to

create a reasonable visual approximation. The primary focus of these efforts has thus been
real-time simulation while maintaining a sensible relationship to physically accurate models.

The current work differs from previous efforts in that our primary focus is the creation of
a physically accurate soil model and its incorporation into a real-time system for engineering
analysis. Before an interactive system was considered, a thorough evaluation of the model
capabilities and efficiencies was investigated. Extensive single and multi-processor optimiza-
tions were performed to produce a model which could compute solutions fast enough for
meaningful interaction, yet remain physically accurate. Further capabilities were gained for
the overall system by subdividing computational tasks and spreading them to distributed re-
sources, each subtask being run on (and optimized for) the particular architecture best suited
for that subtask's computational algorithm. The result is a system which is distributed over
multiple heterogeneous HPC resources1 and the user's local workstation. Information is
transmitted between the user and various system components using a combination of con-
ventional and high-bandwidth networks, as appropriate.

'For simplicity, the term "HPC resources" in this report refers only to high end computational resources.

Chapter 2

System Overview

There are three critical issues to be addressed in creating an effective interactive simulation
for engineering analysis: i) computation of the simulation, ii) communication between the
computational components, and iii) visualization of each solution. While performance tar-
gets for each of these factors will vary depending upon the goals of the application, each
of these issues represents a potential stumbling block to effective interaction. Further, the
configuration combining each of these components adds additional hurdles, especially in het-
erogeneous environments (i.e., machine numerical representations, communication library
differences).

The simplest configuration relies solely upon the user's workstation and has the advantage
of utilizing computational resources which are often under the control of the researcher per-
forming the work, thus removing competition for over-subscribed HPC resources. However,
even with current advancements, most workstations cannot effectively support large simu-
lations interactively. A second possibility is to rely primarily on HPC resources which can
meet the computational demands imposed by the simulation. However, as HPC resources are
not typically collocated with researchers and even more rarely equipped with direct graphics
capabilities, the final display must still appear on the user's local workstation. The most
widely-applicable method of doing this is by using X Windows to display graphics generated
on the remote HPC machine, which results in generally poor graphics performance. Further-
more, all user interaction must be managed by the HPC resource, which is not an efficient
use of these resources, and may be in direct conflict with resource allocation policies.

A third option, and the approach employed in the current work, is to distribute the total
workload between both HPC assets and the user's workstation. The goal in the current
work is an application that supports an interaction/simulation/visualization cycle which ap-
proaches interactive rates for usefully large simulations. Initially, the computations of the
system were divided into two primary parts: the numerical simulation, designed for execu-
tion on an HPC resource; and the visualization, designed for the user's local workstation.
However, it quickly became apparent that interactively rendering particle systems in the
several hundred thousand particle range would be beyond the graphics capabilities of most
researchers' workstations. The problem was resolved by dividing the visualization into two
subtasks, allowing a distribution of the total workload. The first subtask, the data reducer,
determines which particles are visible to the user, given current location and viewing direc-
tion information. The second subtask actually renders and displays those particles. Since

the rendering and display are performed on the user's local workstation, the second subtask
is also given responsibility for user interactions and system coordination. The result is a
system which is composed of three parts, each distributed to the computational resource
for which it is best suited and linked via the appropriate network technology (as defined by
the bandwidth requirements between each task). In selecting the specific architecture on
which to place each task, care was taken to select the architecture most suited to that task's
computational profile.

Trial runs of this system have been successfully performed on a variety of hardware plat-
forms. One such test, discussed in detail later, placed the numerical simulation on a CRAY
T3E, the data reducer on a CRAY C90, and the control and graphics on an SGI work-
station. Using a HiPPI "simulation-reducer" connection and an ATM "reducer-graphics"
connection, the user was provided with a fourteen frame-per-second computational steering
and visualization capability for a 100,000 particle simulation.

Chapter 3

Numerical Simulation

Many applications for soil-structure interaction and particle physics involve large discontin-
uous deformations of particulate media. Such problems include soil plowing, penetrometers,
pile driving, soil-tire interactions, hopper flows, tire/track-soil interactions, and mass move-
ments by avalanche. For a particular problem, particulate medium may deform as a solid,
flow as a fluid, or behave as individual particles. All of these "phases" may play important
roles in the analysis, yet at present no one model exists that can account for all of the differ-
ent characteristics of soil behavior. The DEM is an alternative to the continuum description
for particulate mechanics problems. "Particle model" is a generic term for the class of DEMs
where the representation of a physical phenomenon involves use of discrete particles that in-
teract only at inter-particle contact points. A particle model consists of a set of particles in
which each has an individual collection of attributes (e.g., mass, particle position, velocity)
and some constitutive relationships describing the interaction among particles. The particle
attributes evolve according to the equations of motion.

Particle models have successfully been applied to wide variety of problems in plasma
physics, astrophysics, fluid dynamics, and molecular dynamics [4] [14] [19] [20]. Cundall [9]
is attributed with being one of the first to use particle modeling techniques for evaluating
soil and rock mechanics problems. Several researchers have used DEMs to model granular
assemblies [1] [7] [16]. Ng and Dobry [22] used DEMs to model small strain cyclic loading.
Their simulation results agreed closely with trends found in laboratory tests of sands. Shukla
and Sadd [25] used DEMs to investigate how mechanical stress waves propagate in granular
material and how they are influenced by media microstructure.

The predominant disadvantage of DEMs in soil simulations is the enormous computa-
tional requirement: typically, the maximum number of particles that can be feasibly handled
in DEM computations is no more than a few tens of thousands. This number is much less
than the number of soil particles in a small-scale laboratory test. For example, a labora-
tory direct shear test of medium sand will contain over 200,000 particles and triaxial test
soil specimens can contain over a million particles. In research applications on fundamental
mechanisms, the DEM is used as a surrogate to laboratory experiments because it is possible
to extract information that cannot be measured in real tests. In this context validation is
essential, meaning that a significant increase in problem size is needed to place the DEM on
a firm experimental base. Furthermore, simulations of large deformations in practical engi-
neering problems require orders-of-magnitude more particles than the laboratory tests. The

optimizations and algorithmic modifications discussed below have resulted in a system which
can interactively handle a few hundred thousand particles with a very reasonable response
time. Much larger simulations are possible when one relaxes the requirement for interac-
tive response, making the current implementation applicable to a wide range of modeling
scenarios.

3.1 Algorithm Development: Single Processor

The DEM algorithm consists of three main sections: i) calculation of the boundary and
global body forces, ii) calculation of the forces between elements, and in) integration of the
equations of motion (to move particles and global objects). The length of the time step
is limited by a critical time step which depends on the natural frequency of the particle
interaction and damping. Individual particles in this application have been represented as
spheres, and the soil mass may contain particles of varying radii. The introduction of shear
forces differentiate this model from "smooth particle" models in that a previous contact
history between particles must be maintained.

The initial effort of the project focused on the implementation of the DEM algorithm and
soil physics, with little or no attention given to computational performance. Each section of
the algorithm outlined above looped over all particles, performing computations on a particle-
by-particle basis. Contacts were determined by calculating distances between all particles,
and redundant contact and force calculations were eliminated by limiting the checks to the
current particle and those with a larger index number. The resulting model, though simple,
had a run time that grew exponentially with the number of particles simulated. The bulk
of the computation occurred in the force calculations between particles. As shown in Figure
3.1 only problems in the couple thousand particle range could be reasonably run.

The initial performance evaluation concentrated on single processor performance on a
CRAY Y-MP and was aimed solely at code structure. With no major algorithmic modifi-
cations being made, the emphasis was on improved vectorization, improved input/output,
and the elimination of redundant work. Though, as shown by the second curve in Figure
3.1, performance was improved by at least an order of magnitude, it was still insufficient to
meet project goals and it still scaled exponentially with the number of particles. Even for a
parallel implementation to be successful, single processor capability would have to be in the
tens of thousands of particles. Thus, although performance increases due to restructuring
were significant, further single processor improvements were still necessary.

Performance profiling had clearly established the particle contact checks as the primary
computational bottleneck. The all-against-all particle distance check, though simple, scales
computationally as 0(AT2), making it impractical for large problems. By using a link-cell
type method [13] [15] to create a neighbors list [27], the contact check was reduced to an
O(iV) operation, dramatically reducing the computational requirement, as seen by the final
curve in Figure 3.1. This method divides the physical space of the simulation into a 1 grid
of cells. A simple calculation then determines each particle's "owning" cell. The cell size is
set to greater than or equal to the maximum particle diameter, limiting possible contacts
to particles within a cell and the 26 surrounding cells. Larger cell sizes can decrease the
frequency with which one has to update the neighbors list, but add considerably to the
number of potential contacts. Since the creation of the neighbors list amounted to only

8.0

7.0
|

• Original
• Restructured

CO
73
C
o o a
3-

6.0 /

- Neighbors List

a.
<D

to a
E
i-
k.
CD
0-

5.0

4.0 /

ID
E
P

3.0
/

1 2.0

1.0

0.0

/^/

n 5 10 15
Number of Particles (X1000)

Figure 3.1: Single processor CRAY Y-MP CPU time per time step vs. number of particles for the

three phases of single processor optimization.

5%-15% of the total runtime, it was found to be more efficient to minimize the cell size and

update each time step.

3.2 Algorithm Development: Multi-Processor

Though single processor optimizations substantially reduced runtime, it was clear that a
parallel implementation would be necessary to run large simulations with numerous time
steps. The neighbors list implementation, though dramatically improving runtime, had
created much smaller vector lengths, thus degrading vector processor performance, lne
smaller vector lengths, coupled with the explicit nature of the DEM, made the model an
ideal candidate for non-vector parallel architectures. The success of parallelization efforts
in the molecular dynamics discipline [2][23] further supported the effort. Initially, line-
grained parallelism (loop level) was explored using shared memory with compiler directives,
but was eventually dismissed in favor of a more robust message passing implementation
The message passing version uses a single program, multiple data (SPMD) approach with
domain decomposition. PVM [3] was the message passing library used for development, but

was subsequently converted to MPI [8]. maintain portability.
Since the simulations tend to be fairly rectangular in nature, the solution domain is

decomposed by subdividing the volume grid-wise in the horizontal directions, producing
columnar sub-domains. Planar sub-domains are possible by limiting the subdivisions along
a single axis to one, but planar sub-domains tend to create too few sub-domains for smaller

problems when large numbers of processors are desired. A three-dimensional decomposition
was not considered because it would not only add to the message passing, but would also
risk increased load balance problems due to the greater particle motion in the vertical direc-
tion. Analysis showed that most of the load imbalance for the current problems with this
decomposition was in the edge domains, and that by increasing the size of the edge domains
a load balance could be achieved. Figure 3.2 shows the fractional percentage of computation
and communication without load balancing for a 50,000 particle simulation using an 8 by
8 decomposition on a 64 processor nCUBE2 system. Figure 3.3 shows the same problem
with the load balancing. (Red/dark grey represents computation, while green/light grey
represents communication, including wait times associated with load imbalance.) As can
be seen by these figures, this approach was sufficient for the current problems. However,
if model geometries were to become more complicated, a three-dimensional decomposition
with a more complex data distribution would need to be explored.

The message passing element of the parallel implementation was carefully tuned to min-
imize its effects. To avoid unnecessary synchronization bottlenecks, all particle information
relevant between domains /processors is exchanged once at the beginning of each time step
Bordering particles are treated as "ghost" particles and are only used as contributing el-
ements. All particle information is stored in temporary arrays so it can be passed all at
once. This minimizes message latency and maximizes message sizes, at the cost of somewhat
more memory (though the model's memory requirement is still dominated by the burden of
saving previous contact histories). Overall, the message passing version is very similar to
the single processor version. The primary differences are the wrapper routines dealing with
particle ownership and passing, a few global reductions to handle global forces and larger
objects, and some minor logic to appropriately handle non-owned or "ghost" particles. A
more detailed description of the work can be found in [6].

3.3 Performance

The parallelization effort substantially increased the number of particles that can be modeled
interactively, and test runs of up to one million particles have been successfully performed
in batch mode. The model has been run on several HPC architectures and configurations.
Figure 3.4 shows the average time per time step for a 100,000 particle simulation for several
architectures. Figure 3.5 shows the average time per time step for solutions of varying sizes
on a CRAY C90, a CRAY T3E, and an SGI Power Challenge Array.

Fraction
Used

20 40
Processor Number

60

Figure 3.2: Percentage of CPU time (bottom/red) vs. percentage of communication time
(top/green) for a 50,000 particle simulation on a 61-processor nCUBF/2 without load balancing.

Fraction
Used

20 40
Processor Number

60

Figure 3.3: Percentage of CPU time (bottom/red) vs. percentage of communication time
(top/green) for a 50,000 particle simulation on a 61-processor nCUBF2 with load balancing.

10

5.0

T3
C
o

Q.
<D

CD
E

4.0

3.0

I IBM SP2 (thin node) - 64
CRAY T3D - 64
SGIPCA-15
CRAY C90 - 4
CRAY C90 - 1
IBM SP2 (thin node) - 1
SGI PCA - 1

O)
Q.

0)
E

2.0

CD > < 1.0

0.0 I
Figure 3.4: Average time per time step for a 100, 000 particle solution on several HPC architectures.

IS)
■D
C
o u
CD

a.

CD

E

<D a.
CD

CD

3

10.0

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

i—» CRAY C-90 Single Processor
•—■ CRAY T3E - 12 Processors
*—A SGI PCA - 12 Processors
• - • CRAY T3E - 64 Processors
♦ -♦ CRAY T3E - 225 Processors

200 400 600
Number of Particles (X1000)

800

Figure 3.5: Average time per time step for various HPC architectures.

11

Chapter 4

Visualization

Data visualization and display are at the core of this system, providing the visual feedback
necessary to understand how the model responds to various external inputs. Because the sys-
tem is designed to support interactive exploration of soil-structure behavior, the information
in the visualization must be easily assimilated (the user does not have long to study any sin-
gle image), and each image must be generated and displayed quickly enough to avoid creating
a bottleneck. The data being analyzed is a system of discrete particles; each particle has a
radius (which may be different from other particles), a force, and a position P = P(x,y, z) in
5ft3. The most straightforward approach for visualizing this data is to render the particles as
spheres, a geometric primitive for which many graphics libraries provide high-performance
rendering calls. This representation is highly intuitive, and it is a simple matter to indicate
the force being exerted upon each sphere by coloring its surface appropriately. Furthermore,
this approach implicitly conveys velocity vector information as particles are displaced during
solution updates. This technique relies upon the graphics hardware of conventional desk-
top graphics workstations for rendering, rather than transferring these computations to an
HPC resource as might have been required for more computationally intensive visualization
techniques such as direct volume rendering.

Despite the advantages, rendering the particles as pseudo-colored spheres has several im-
portant disadvantages when implemented naively. The only computer hardware components
proposed in the system thus far are the HPC resource performing the numerical simulation
and the user's workstation performing the visualization. Maintaining smooth interaction
with the data being visualized is problematic in this configuration for several reasons. First,
transferring the results of a 100,000 particle simulation (for example) to a user's workstation
for visualization involves transmitting over 100,000 particles x 5 floating point quantities
per particle x 4 bytes per floating point number, or 2 x 106 bytes. Updating a solution of this
size fast enough to maintain reasonable model interaction requires that the user's worksta-
tion and the HPC resource performing the simulation be very tightly coupled, a requirement
which is considered too restrictive in a useful distributed system. This problem becomes an
even larger obstacle when one considers that systems of several hundred thousand particles
are desired. Secondly, supporting interactive rendering and visualization of particle systems
this large requires very high performance graphics hardware not readily available to most
researchers. Even if such hardware is assumed to be available, the size of particle systems
simulated would quickly outstrip the interactive capabilities of the graphics hardware. Given

12

these network bandwidth and graphics constraints it is unlikely that large particle systems
can be transferred, processed, and displayed fast enough to support real-time interaction on
a user's workstation. The solution to this problem lies in the division of the data visual-
ization into two distinct processes: a pre-visualization data reducing module which utilizes
HPC resources to identify visible particles, and a local visualization module which displays
only visible particles and manages user interactions.

4.1 Data Reduction

While the visualization module provides graphics and handles user interaction, the data
reduction module is a critical element in facilitating interactive visualization of large particle
systems. Each full solution is transmitted from the particle model to the data reducer
as it becomes available, after which the data reducer, a modified ray caster [17] [24], uses
information about the user's current view to identify particles which are currently visible
to the user. These visible particles are then sent to the user's workstation for visualization
and display. ("Visible particles" in this context refers to particles which are not occluded
by other items in the scene; for example, if the particles are held in a box and the user is
viewing the particles from outside that box, then the only particles which are visible are
those lining the outside faces of the box.) This approach is very effective - up to 95% of the
particles in a simulation are not visible to the user at any one time and can thus be eliminated
from the visualization process. In identifying and transmitting only visible particles to the
local workstation, this module thus serves to reduce both the network bandwidth required
between the user and simulation and the level of graphics performance required of the user's
workstation.

4.1.1 Algorithm

The ray casting technique used in this system is very similar to those commonly used in
direct volume rendering. Volume rendering techniques create a view of a three-dimensional
data set by casting rays from the viewer's location through each pixel of a viewing window
into the data, as shown in Figure 4.1. As the ray passes through the volume, samples are
taken from the data set at intervals along the ray's path and are then mapped to a specific
color and opacity. This color and opacity are added to the previously encountered values
along the ray to produce a final pixel color for the ray in the image. For example, a ray
passing from the viewer into a red cell and then a blue cell (each of equal opacity less than
one) may produce a purple pixel in the final image.

In the current work, rather than rendering images directly from the data volume, the
algorithm has been modified to serve as a visible surface determination engine (an overview
of ray casting for visible surface determination is provided in [10]). The volume in this case
is the bounding volume which contains the particles of the most recent solution. Using the
same method as the soil model, particles are mapped to cells, creating a neighbors list. Rays
are then cast from the viewer's eye through each pixel of the viewing window into the data
volume, and the point of intersection for each of these rays with the bounding volume of
the solution is used to map the ray to an individual cell. All particles contained in this and
neighboring cells are checked for contact with the ray; if contact is found, the particle nearest

13

Pixel Ray

View Plane

Figure 4.1: Ray casting.

the intersection point is marked as visible. If no contacts are found, the ray is advanced into
successive cells of the volume. This process is repeated either until a contact is found, or
the ray leaves the volume. After all rays have been cast, the marked particles are gathered
into a temporary buffer and transmitted to the graphics workstation. The entire process,
except for the creation of the neighbors list, is repeated as updates to the current view are
received from the user. The creation of the neighbors list, unlike the ray casting which is
static with the number or rays, grows computationally with the number of particles and is
therefore only performed when an updated solution is received.

The success of this algorithm in selecting all visible particles for display depends upon
the density with which the particles are sampled. Clearly if there are too few rays, or if the
rays are not located close together, particles will be missed and the final visualization will
not appear as a contiguous mass of particles. To ensure an appropriately dense sample, the
object space extents of the window through which the rays are cast are redefined for each new
view to match the minimum and maximum particle locations. This enables the volume to be
sampled with the maximum number of rays regardless of the user's distance from the volume,
and minimizes the number of pixels required in the view window. While this technique is
not completely accurate for all views, it is nonetheless quite effective in delivering frames
quickly enough for interaction while being accurate enough to maintain confidence in the
visualization. The plot in Figure 4.2 shows the average number of reported visible particles in
a 40,000 particle solution as the number of rays used to sample the particle volume increases.
Figure 4.2 indicates that over 94% of all visible particles have been identified with a matrix
of as few as 200 x 200 rays. Although this level of accuracy is not ideal, the user benefit
arising from the ability to explore the particle volume at a higher frame rate outweighs the
information lost in not detecting the remaining 6% of visible particles. Future efforts are
expected to focus on improving the scalability profile of this approach in order to reduce the
need for this trade-off.

14

200 400
Square Root of the Number of Rays

600

Figure 4.2: Number of visible particles detected as the sample density increases.

4.1.2 Performance

The significant drawback of this approach to visible particle determination is the time and
computational resources needed to cast an adequate number of rays. Unlike the simulation,
the data reducer must be capable of sustaining a frame rate sufficient to produce a "fluid"
animation; indeed, it is the data reducer which is most responsible for maintaining the
target interaction rate of the system. This component is critical to interactive performance
because the user at their workstation does not see the effect of a scene manipulation action
(i.e., rotating the dataset to see a different view, etc.) until the data reducer delivers the
resulting set of visible particles for display. Thus, the user cannot re-orient or explore the
current solution interactively without receiving updates from the reducer at least ten times
per second. Because of these stringent performance demands, the data reducer has been
targeted for placement on HPC architectures. The algorithm parallelizes effectively on shared
memory architectures because each ray traverses the volume independently of surrounding
rays [12]. Furthermore, the algorithm vectorizes extremely well, making it well-suited to
parallel vector processing systems such as the CRAY C90 or T90.

Communication requirements to the user's workstation scale reasonably well in that, as
the number of particles in the simulation increases within a volume of fixed size, the number
of visible particles increases only as the surface to volume ratio of the polygon bounding the
system (limited by the resolution at which the data is sampled by the modified ray caster).
The introduction of the data reducer thus relaxes the requirement for a very high bandwidth
connection between the simulation and the user's workstation, enabling the visualization

15

and display to take place on an computer system close to the researcher, again facilitating
the use of hardware resources in those tasks for which each is best suited. However, while
the high bandwidth requirement between the user and the simulation has been relaxed, a
new requirement for fast data transfer has been added between the data reducer and the
simulation. As new solutions are generated by the simulation, they are transmitted to the
data reducer, displacing the previous time step's solution as the soil mass being visualized.
But, because the time steps in the particle simulation are usually very small, the distance a
particle travels in one time step is not visually significant. There is very little advantage to
the user in transmitting a solution at every time step to the data reducer. This allows the
number of time steps between successive transmissions of solutions to the data reducer to be
adjusted to correspond to the time required to deliver each solution. If a HiPPI connection
is available between the reducer and the simulation, solutions are sent more frequently than
if these components are connected by FDDI or OC-3 ATM connections. This enables a
workable balance to be achieved between the solution rates of the simulation, the time to
transmit a solution to the data reducer, and the time needed to reduce a view. As commodity
networks speeds continue to grow to OC-24 and beyond, the need for this balancing may
diminish.

Figure 4.3 summarizes the rate at which the reducer can complete visible particle deter-
mination (i.e., frames generated per second) for solutions with varying numbers of particles.
The results were generated on twelve processors of both a CRAY C90 and an SGI Power
Challenge Array using 200 x 200 rays; the frame rate is determined by averaging the single
frame computation times from 200 positions around the data set for both static and dynamic
data sets. The SGI data is only included to demonstrate that the code is portable to other
architectures and to highlight the observation that the algorithm as implemented performs
more effectively on vector processors. The static data case is one in which the solver has not
provided a new solution so that the neighbors list does not need to be rebuilt as it does in the
dynamic data set case. Typically the user will view a single data set from many views before
the solver updates a given solution; these curves therefore represent performance bounds on
the frame rate delivered to the user. For a well-balanced simulation the performance will
be closer to the top curve. Note that while there is a strong performance dependence upon
the number of particles, the data reducer provides for a response within our target range
even for simulations containing approximately 400,000 particles, and solutions involving up
to 800,000 particles can be visualized effectively with some additional latency in response
times.

4.2 Display and User Interaction

After the visible particles have been identified, they are transferred to the visualization mod-
ule, which is responsible for processing and displaying these particles and for handling all
user interactions within the distributed system. Figure 4.4 is a snapshot from the system
which shows a representative visualization and the graphical user interface (GUI). The ren-
dering and display tasks are implemented in C using OpenGL, with X/Motif used for the
GUI. Both X and OpenGL are widely available, preserving some degree of portability for
the system. The image shows a plow being forced through a mass of particles from left
to right. As discussed above, each of the particles is rendered as a sphere and the forces

16

C
8

cn
I—
a
o.
(O
a>
E
to

20.0

15.0

10.0

5.0

0.0

— CRAY C-90 Static Data
-• CRAY C-90 Dynamic Data
* SGI PCA Static Data
+ SGI PCA Dynamic Data

200 400 600
Number of Particles (X1000)

800

Figure 4.3: Data reducer performance (average frames per second) on 12 processors versus the
number of particles.

exerted on each particle are indicated by colors which range from blue for the lowest values
through green and yellow to red for the highest value. As the user explores the data set,
updated viewing matrices and control information are sent to the data reducer for use in
identifying the new set of visible particles. The user interacts with the particles of the soil
model through the interactor (the plow in this image) which is controlled by the user with
a mouse or similar input device, and is used to apply external forces to the particle system.
The plow in Figure 4.4 is one of several simple interaction geometries currently supported.
Specific applications to incorporate more complex interaction geometries (e.g., tank tracks,
etc.) are in development.

As with the simulation and the data reducer, care was taken to balance the performance
of the visualization and GUI tasks with the rest of the system to avoid producing bottlenecks
or overloading other modules. Even though the data reducer can eliminate as many as 95% of
the particles before rendering, for large simulations this still leaves thousands of particles to
be displayed. Each particle is drawn as a tessellated sphere, and an acceptable approximation
to a sphere can be achieved with about 25 polygons. Each polygon must be processed by the
graphics pipeline and rendered before final display. If a large number of particles are visible
to the user, the graphics processing time can become too great for interactive rendering. In
fact, for a simulation of large enough size this is guaranteed to happen: 5% of a one million
particle solution is 50,000 particles - too many to render interactively on generally available
hardware. The goal then was to improve the efficiency of the rendering phase and increase the
number of particles which can be displayed and manipulated interactively. The visualization

17

I rlEIBtlons fxtt '

• >••.' | M J I.,,, ., MS

V
" : V

■:---.i.4^

^ ; , 'S
^ . ".<!

'■. M
■■■i ->

t= 1 n
■ '■■ .|

 ,. m '":
' ' J J

A ' ■♦•■■■.■ ':.■ ;
*. i. ;i

i."
, .r±i :

•■ —.rr.,,. , >:p - * * 1 . -.1 - _ . 1 , „ . . . J_.. I
I I M 1

Figure 4.4: Interactive Soil Model.

code was profiled to highlight time consuming computations in the rendering process and
identify which part of the graphics pipeline was most heavily stressed during display. The
analysis was performed on a Silicon Graphics workstation, and exposed a bottleneck in the
per-polygon stage of the graphics pipeline. This bottleneck was resolved using standard
graphics pipeline tuning techniques [26], resulting in an overall rendering speed four times
faster than the original code.

Despite this improvement, the distributed system still started to show signs of rendering
speed limitations in handling simulations of particle systems with more than one to two
hundred thousand particles. The primary cause of this difficulty is the number of polygons
required to create a reasonably spherical particle. For users with a workstation which sup-
ports hardware texture mapping, there is an elegant solution to this problem which greatly
simplifies the geometry and allows a significant improvement in the number of particles which
can be handled interactively. Rather than building a spherical object from many polygons,
each sphere is represented by a single polygon. This polygon (a square with side twice the
radius of the sphere) is colored to indicate the magnitude of the force exerted upon the
particle it represents, just as the spheres are. The polygon is then texture-mapped with the
image of a lighted sphere and oriented dynamically so that it always faces the user, giving
the appearance of a colored, smooth sphere when viewed from any angle [11]. Because tex-
ture mapping is done in hardware, this technique will allow approximately 20 to 25 times
more spheres to be represented than the multi-polygon representation, and these textured
spheres don't appear as faceted in the tessellated case. This improvement is the theoretical
best-case, achievable only if the polygons in the texture-mapping approach are not sorted
first. In practice, these polygons must be sorted by distance from the viewer before render-
ing to ensure that transparency effects are correctly computed. This introduces additional
overhead which reduces the improvement to a factor of approximately ten. Added perfor-
mance benefits are derived from the texture-mapping approach because the texture map
includes a specular highlight, which means it is not necessary to perform lighting calcula-
tions. The overall performance improvement is significant; rendering 5,000 spheres at 24
Gouraud shaded polygons per sphere on an SGI Onyx workstation (very large facets) re-
quires 0.25 seconds per frame on average, while visualizing the same number of spheres using
the texture mapping alternative requires only 0.03 seconds. More efficient sorting algorithms
are being introduced to increase the performance even further.

Finally, a beneficial consequence of the strongly distributed design of this system is that
changes in one portion of the system need not affect the remaining system components.
Thus, modifications to the visualization module to provide support for a broader range of
interaction devices, such as head-mounted displays, need not impact the remaining system
modules. The system currently supports both standard desktop monitors and stereographic
displays. Future work will include expansion of the stereographic capability to immersive
interaction environments.

19

Chapter 5

Communication

In order for the individual software components to function as a system they must communi-
cate with one another, and, as shown in Figure 5.1, information in this system travels along
three data paths. Each of these data paths has widely varying bandwidth requirements,
and the computational resources used in the system are heterogeneous and possibly geo-
graphically distributed. These factors had a key influence in developing the communication
protocols used to transfer data among modules in the system.

There are several successful portable software libraries available in the public domain
which support communication between heterogeneous architectures. Notable among these
are PVM and MPI. Initially, we considered using one of these libraries as the software layer
connecting the components of the distributed system. This would have enabled use of widely
accepted and supported message passing software and shorted the development time by
eliminating the need to write special-purpose communications routines for the application.
However, early tests indicated that a general purpose message passing library would not
provide all of the support necessary to facilitate interactive distributed simulation. First,
message passing libraries often support communication between machines having different
internal data representations using the eXternal Data Representation library (XDR), and
our experiences indicate that on some machines, such as the CRAY C90, conversion of
large messages with XDR is too slow for interactive computation. Second, after analysis of
the bandwidth requirements between the various system components, it became clear that
several different networking technologies would have to be employed to reach system goals.
The most effective way to ensure optimal use of those technologies is to have direct access
to the network programming layer.

Communication paths are therefore created and maintained using a simple two-layer
communications protocol implemented specifically for this system. The first layer abstracts
communication operations as a set of high level routines, which simplifies the process of
substituting new communications technology into the system. The second layer performs
the data communications. Routines in this layer vary according to the architecture and
networking technology employed. For example, native HiPPI communication routines can
be used between various machines and the CRAY C90, while the ATM interface on the C90
is accessed through the UNIX stream socket mechanism because direct programmer access
to the ATM programming interface routines is not supported. Where data conversion is
necessary routines tuned to the machine doing the conversion are employed. For example,

20

Numerical
Simulation

Prc-
Visualization
Data Reduction

Visualization
and User
Interaction

Figure 5.1: System overview.

when the data reducer is placed on a CRAY C90, the set of visible particles must be converted
to IEEE floating point representation before being sent to the SGI workstation for display.
This conversion is accomplished using the vendor-supplied routine CRI2IEG(). Note that in
this case it is advantageous to perform the conversion before transmitting the data, as the
IEEE single precision floating point representation only consumes four bytes while a single
precision Cray floating point quantity uses eight bytes. While this approach is developer-
intensive and not as general as using MPI or PVM, it does provide the maximum opportunity
for high performance communication. Furthermore, a degree of portability is maintained for
the system since it is possible to use UNIX sockets to communicate between all components in
the system on machine/network interface combinations for which specialized communications
routines have not been developed.

As mentioned earlier, the bandwidth requirements of the various data communication
paths in the system vary widely according to function. The path between the visualization
and the simulation updates the simulation module with the current position and orientation
of the interaction geometry. This connection requires less than 100 bytes per update to
transfer interactor control information, and even at twenty updates per second this amounts
to a small quantity of data. The simulation-data reduction connection is used to transfer
the entire solution at each update, the size of which depends upon the number of particles
in the simulation, while the connection to the data visualization module transmits the cur-
rently visible particles, the number of which depends upon both the number of particles in
the system and the user's current view. For example, a 100,000 particle solution requires
100,000 x 5 x 4 = 2 x 106 bytes be transferred to the data reducer per solution update
(assuming that four byte floats are used during data transfer). If an average of 4,000 of
these particles is visible to the user at any one time, 4,000 x 5 x 4 = 8 x 104 bytes are
transferred to the user's local workstation for processing and display per view update. It is
expected that view updates will be sent on average more frequently than solution updates

21

as the user manipulates the view of the particle volume. The visualization-data reducer con-
nection should therefore be capable of handling at least 10 x 80,000 bytes per second, a rate
manageable by ATM networks over longer distances. However, even assuming the maximum
OC-3 transfer rate of 155 Mbits/s is available, an ATM connection will limit the update rate
between the simulation and the reducer to less than ten solutions per second for a 100,000
particle simulation, a figure generally too low for acceptable interaction. Worse, it is not
realistic to assume that the maximum theoretical rate is attainable. Supporting reasonably
responsive interaction thus requires a sustainably high bandwidth connection between these
two elements of the system. In practice this is not an overly burdensome restriction, as many
modern HPC centers currently support tightly coupled computing environments. For exam-
ple, a HiPPI connection between two HPC assets in the same center is not uncommon. It is
still possible, of course, to use lower bandwidth connections (for example if tightly coupled
HPC resources are not available), but the simulation should restrict the number of solutions
it sends to the data reducer per second such that the total amount of data transferred is not
greater than the bandwidth of the network connection.

A final optimization made in system communications was the separation of I/O tasks
in the numerical simulation to a dedicated processor. As mentioned earlier, the numerical
simulation is parallelized using MPI, and it was relatively simple to designate one processor
as responsible for all communications with the data reducer and the user's workstation. The
remaining processors in the simulation compute the new solutions. By using asynchronous
messages between the compute processors and the I/O processor, and by adjusting the
number of time steps between print intervals to match the send time between the simulation
and reducer, computation can be completely overlapped with I/O, greatly reducing idle
processor time. A similar approach is being explored for the data reducer.

22

Chapter 6

Results

To provide an indication of the present capabilities of the system, a test simulation for
a 100,000 particle system was performed using a 16-processor CRAY C90 for the data
reduction, 101 processors1 of a CRAY T3E for the numerical simulation, and a Silicon
Graphics Power Onyx Infinite Reality system for the final display. The two CRAYs are
connected to one another via a HiPPI channel. The connection between the SGI and the
C90 (data reducer) is an OC-3 ATM link, while the much smaller bandwidth requirements
between the T3E (simulation) and the SGI permit use of a standard Ethernet connection.
The ATM connection between the C90 and the SGI workstation is facilitated by special-
purpose hardware known as a Bus-Based Gateway, or BBG. Cray Research does not support
a native ATM capability on the C90; the BBG facilitates ATM communication by translating
between the HiPPI and ATM protocols. Because the HiPPI channel is used by the C90
to communicate with both the numerical simulation and the user's workstation (via the
BBG/ATM link) the competition for resources is expected to impact the achieved bandwidth
to both processes.

The physical problem being simulated was a user-controlled plow being forced through
a mass of heterogeneous particles. In order to balance the speed of the simulation with the
needs of the rest of the system, the simulation was set to send new solutions to the data
reducer at ten time step intervals. This resulted in reasonably smooth particle motion in
response to user actions on the plow while preventing the data reducer from being over-
whelmed by the flow of new data from the numerical simulation. Evaluation runs using
smaller send intervals yielded some reduction in the responsiveness of the data reducer in
allowing the user to smoothly manipulate the particle mass. Larger send intervals resulted in
poor system response to user actions on the plow. Dedicating I/O tasks on the data reducer
to a separate process, as was done for the numerical simulation, would reduce the impact
of the send interval choice on the frame rate delivered to the user and is currently under
development.

The workstation used for the visualization module supports hardware texture-mapping,
so a single textured polygon was used to represent each sphere. In this configuration, the
data reducer was able to reduce an average of fourteen frames per second while manipulating
the 100,000 particle data set, providing a response well within what is typically accepted as
interactive performance. With a send interval of ten time steps, the numerical simulation

1100 for computations, and 1 (as discussed previously) for I/O.

23

delivered new solutions to the data reducer at a rate of between five and seven solutions
per second, corresponding to a computation rate of 50-70 solutions per second. At seven
solutions per second the perceived response of the system to user actions on the plow is
slightly less than optimal, but still smooth enough to be perceived as interactive. One
factor which affected the delivery of solutions to the data reducer was competition for HiPPI
bandwidth on the C90. Also, the TCP/IP protocol was used for communications over this
link rather than native HiPPI. The end result is an effective bandwidth of only 100 Mbits/sec,
significantly less than the 800 Mbits/sec maximum for this device. Future efforts will extend
support for native HiPPI communications between the T3E and the C90.

The average number of visible particles delivered to the user during the course of the
simulation (which involved manipulating the dataset through 360 degrees several times) was
3.5% of the total particles in the simulation, indicating that the data reducer serves its pur-
pose well in reducing the bandwidth requirement between it and the display module. These
particles were delivered, on average, at 70 Mbits/sec over the ATM connection between the
two modules. This rate is only a fraction of the theoretical maximum of 155 Mbits/sec. The
chief culprits in this low performance are the overhead associated with the TCP/IP protocol
and competition for I/O service from the CRAY C90 through the Bus-Based Gateway.

24

Chapter 7

Conclusions

A distributed, interactive particle simulation system has been developed which allows real-
time assessment of the response of vehicles and vehicle systems in a large, three-dimensional
soil mass. The system has been developed to help evaluate the off-road performance of mili-
tary land vehicles in various soil conditions, and will supplement field experiments, ultimately
resulting in less expensive, more efficient vehicles designed with less dependence on full-scale
experimentation. To facilitate the highest possible level of interactivity, computational tasks
in the system are divided into three major subtasks, each optimized for the particular archi-
tecture best suited to that subtask's execution. The result is a system which is distributed
over multiple heterogeneous computational resources, with information transmitted between
the user and various system components using ATM and HiPPI networks.

The system is strongly distributed, which means that changes in one portion of the system
need not affect the remaining system components. Thus modifications to a particular module,
such as the numerical simulation or additional support for non-traditional display devices,
can be made with no impact on the remaining system. Furthermore, the application has been
designed to support a range of modeling objectives, and can be used in computation-only
mode for very large simulations as well as interactive mode. Where practical the various
components have been designed for portability by using standard interface libraries such as
MPI, OpenGL, and X/Motif.

In designing this system to be interactively responsive to the user, a range of technical
problems were encountered. The computational burden of the discrete element method was
addressed by optimizing the computations with both single and multi-processor techniques.
Real-time visualization of large particle systems was accomplished by first dividing the vi-
sualization task into subtasks, and then tuning each subtask for the target architecture.
The speed of the display stage was further improved with the use of textures to greatly
simplify particle geometry. Also, communication support for ATM, HiPPI, and standard
Ethernet communications in coordinating the flow of data between the various heteroge-
neous computational components in the system presented a significant challenge. Finally,
as each component was developed, special efforts were taken to ensure that the computa-
tion and communications requirements of each portion was satisfied and optimized without
introducing significant new bottlenecks in the remaining system.

25

Chapter 8

Future Work

Future development efforts will address several concerns in the present system. The results
generated by simulations with the current discrete element model have successfully verified
the model against laboratory-scale experiments (several hundred thousand particles) of soils
subjected to large deformations. The DEM has unique benefits for soil mechanics problems
from a material science standpoint, but despite the computational advances of the current
work its applicability remains limited to laboratory-scale problems. However, using contact
statistics from the current DEM simulations, a smoothed discrete element method (SDEM)
is being developed to extend simulations to the field-scale (i.e., several orders-of-magnitude
more particles in the soil masses simulated). This smoothed particle system is intended to
model the macroscopic behavior of granular media. The method being developed is similar to
the particle-in-the-cell method used in smoothed particle hydrodynamic codes as described
by Hockney and Eastwood [14]. Follow-on efforts will include the development of constitutive
laws for cohesive soils, the introduction of a pore fluid, and enhanced boundary conditions.

As mentioned earlier, the scalability profile of the visible particle determination method
needs to be improved to reduce the need to trade-off accuracy in the number of particles
selected as visible for real-time performance. Efforts will also be directed at improving
the efficiency of the communications layer by adding native support for a wider range of
networking technologies. Furthermore, additional research in the visualization module is
anticipated to extend the user interaction paradigms to immersive technologies.

Finally, the infrastructure developed in the current work is applied to a specific soil-
structure interaction problem. There are no intrinsic design elements which would prevent
this system from being applied to more diverse application domains, and future efforts at
generalizing the techniques to other applications are expected.

26

Bibliography

[1] R. J. Bathurst and L. Rothenburg. Micromechanical aspects of isotropic granular as-
semblies with linear contact interactions. Journal of Applied Mechanics, 15:12-23, 1988.

[2] D. Beazley, P. Lomdahl, N. Gronbech-Jensen, R. Giles, and P. Tamayo. Parallel al-
gorithms for short-range molecular dynamics. World Scientific's Annual Reviews in
Computational Physics, 3, 1995.

[3] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. A user's guide
to PVM: Parallel virtual machine. Technical Report ORNL/TM-11826, Mathematical
Sciences Section, Oak Ridge National Laboratory, September 1991.

[4] W. Benz. Smooth particle hydrodynamics, a review. In The Numerical Modeling of
Linear Stellar Pulsations, pages 269-288. Kluwer Academic Publishers, 1990.

[5] J. Burg, J. M. Moshell, and et al. Behavioural representation in virtual reality. In Pro-
ceedings of Behavioral Representation Symposium. Institute for Simulation and Training,
1991. Orlando, FL.

[6] A. R. Carrillo, D. A. Homer, J. F. Peters, and J. E. West. Design of a large scale
discrete element soil model for high performance computing systems. In Proceedings of
Supercomputing 1996, November 1996. Pittsburgh, PA.

[7] J. Christoffersen, M. M. Mehrabadl, and S. Nemat-Nasser. A micromechanical descrip-
tion of granular material behavior. Journal of Applied Mechanics, 48:339-344, 1981.

[8] L. Clark, I. Glendinning, and R. Hempel. The MPI message passing interface standard.
Technical report, 1994. Available at ftp://par.soton.ac.uk/pub/mpi/paper.ps.

[9] P. A. Cundall. Rational design of tunnel supports: A computer model for rock mass be-
havior using interactive graphics for the input and output of geometrical data. Technical
Report MRD-2-74, Missouri River Division, Corps of Engineers, September 1974.

[10] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics: Principles and
Practice, 2nd ed. Addison-Wesley Publishing Company, 1990.

[11] K. Gaither, R. Moorhead, S. Nations, and D. Fox. Visualizing ocean circulation models
through virtual environments. IEEE Computer Graphics & Applications, 17(1):16—19,
Jan-Feb. 1997.

[12] S. Green. Parallel Processing for Computer Graphics. MIT Press, 1991.

27

[13] G. S. Grest, B. Dunweg, and K. Kremer. Vectorized link cell Fortran code for molecular
dynamics simulations for a large number of particles. Comp. Phys. Comm., 55:269-285,
1989.

[14] R. W. Hockney and J. W. Eastwood. Computer Simulation using Particles. Adam
Hilger Publishing, 1988.

[15] R. W. Hockney, S. P. Goel, and J. W. Eastwood. Quiet high-resolution computer models
of a plasma. Journal of Computers in Physics, 14:148-158, 1974.

[16] D. Homer, J. Peters, S. Howington, and R. Hryciw. Effects of grain size distribution
representation on the physics of particulate materials. In Proceedings of the Institute for
Mechanics and Material Workshop on Mechanics and Statistical Physics of Particulate
Material, June 1994.

[17] M. Levoy. Volume rendering: Display of surfaces from volume data. IEEE Computer
Graphics and Applications, 8(5), May 1988.

[18] X. Li and J. M. Moshell. Modeling soil: Realtime dynamic models for soil slippage and
manipulation. In Proceedings of SIGGRAPH '93. Association of Computing Machinery,
July 1993. Anaheim, CA.

[19] R. H. Miller. Experimenting with galaxies. American Scientist, pages 152-163, April
1992.

[20] J. J. Monagahan. Smoothed particle hydrodynamics. Annual Review of Astronomy
Astrophysics, 30:543-574, 1992.

[21] J. M. Moshell, X. Li, and et al. Nap-of-earth flight and the realtime simulation of
dynamic terrain. In Proceedings of International Society for Optical Engineering, April
1990.

[22] T. T. Ng and R. Dobry. A non-linear numerical model for soil mechanics. International
Journal for Numerical and Analytical Methods in Geomechanics, 16:247-263, 1992.

[23] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of
Computers in Physics, 117:1-19, 1995.

[24] P. Sabella. A rendering algorithm for visualizing 3-D scalar data. Computer Graphics,
22(4):51-58, August 1988. Proceedings of SIGGRAPH '88.

[25] A. Shukla and M. H. Sadd. Wave propagation and dynamic load transfer due to ex-
plosive loading in heterogeneous granular media with microstructure. Technical Report
Prepared Under Contract No. F49620-89-C-0091, U.S. Air Force Office of Scientific Re-
search, August 1990.

[26] Silicon Graphics, Inc. Graphics Library Programming Tools and Techniques, 11 1991.
Document Number 007-1489-010.

[27] L. Verlet. Computer experiments on classical fluids: I. thermodynamical properties of
Lennard-Jones molecules. Physics Review, 159:98-103, 1967.

28

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 07044188

Pubfc reporting button for Ms coloction of Infonnaion
and maintaining tho data noodad, and oompferting and rsviawing Via cotacVon of information. Sand convnants reganflng Ms button asttmata or any othar aspact of Ms coMoctfon of
w»\Mniuiiuii,BTciuowigsugg8sponsKji Mynwuy, ouro
1204,AiCngton,VA 22202-4302. «id to the Offce of Management and Budget, Paper*«* Reduction Proj^ (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

July 1998
3. REPORT TYPE AND DATES COVERED

Final report

4. TITLE AND SUBTITLE
Interactive Computational Steering in Distributed, Heterogeneous High
Performance Computing Environments

5. FUNDING NUMBERS

6. AUTHOR(S)

Alex R. Carrillo, John E. West

7. PERFORMING OKUU«ZATIC*NAME(S) AND ADDRESS(ES)

U.S. Army Engineer Waterways Experiment Station
3909 Halls Ferry Road, Vicksburg, MS 39180-6199

ft. PERFORMING ORGANIZATION
REPORT NUMBER

Technical Report ITL-98-2

9. SPONSORMGWOMrTORMG AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Corps of Engineers
Washington, DC 20314-1000

10. SPONSORMG/MONTTORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Available from National Technical Informance Service, 5285 Port Royal Road, Springfield, VA 22161.

12a. DtSTOBUnOWAVAftLABiLnY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT ßlmxhmim 200 word»)

The ability to visually interact with and guide a running simulation can greatly enhance understanding of both the
nature of a numerical model and the characteristics of the underlying physical process. Until recently, interaction
with large-scale simulations was inhibited not only by computational limitations, but by network and graphics capa-
bilities as well. However, the increasing power of large high performance computing (HPC) systems, coupled with
the advent of new network hardware and innovative techniques for displaying large data sets, has eliminated many of
the barriers. It is now possible to link large computational resources with powerful remote graphics workstations to
create fully interactive, distributed applications.

This report discusses die development of a distributed, interactive modeling system capable of providing respon-
sive visual feedback to user input The system is built around a discrete element soil model being used to simulate
the behavior of soil masses under large deformations. During the process of designing this system to be interactively
responsive to the user for systems of several hundred thousand particles, a range of technical problems were encoun-
tered, including die computational burden of the discrete element method (DEM), real-time visualization of large

(Continued)
14. SUBJECT TERMS

Discrete element method Interactive simulation
Distributed visualization Ray casting
High-performance computing Soil dynamics

15. NUMBER OF PAGES

35

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OFTWSPAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LMTATION OF ABSTRACT

NSN 754001-280-5500 Standard Form 298 (Rev. 2-89)
Proscribed by ANSI Std. Z39-18
296-102

13. (ConchKtod).

particle masses, and communication of data over large distances between heterogeneous resources using a variety of
networks. This report highlights how each of those obstacles was addressed and discusses the effectiveness of the
final system.

